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Supplementary Materials for

Constrained Maximum Likelihood Estimation for

Model Calibration Using Summary-level Information

from External Big Data Sources

S.1 Additional Simulation Results

S.1.1 Simulation Results for the Logistic Model with N = 400

Tables S.1–S.4 provide simulation results supplementary for those of Tables 1–4 in the main

text, respectively. Here, the sample size of the internal study is N = 400. All the other

details are the same as the corresponding simulation studies in the main text.

S.1.2 Simulation Results for the Probit Model and Further Data

Application

Tables S.5–S.7 provide simulation results when the full model is given by the probit

model. In these simulations, the reduced model is still given by a logistic model. In

the under-specification and missing covariate scenarios, the parameter values of the true

model (β0, βX , βZ , βXZ) = (−1, 0.4, 0.4, 0.2); in the measurement error scenario, they are

(β0, βZ) = (−1, 0.4). Such specifications lead to a population disease prevalence around

20%. All the other details are the same as the simulation studies in the main text.

S.1.3 Further Data Applications

Table S.8 presents further analysis results of BCDDP plus BPC3 data. In the this analysis,

the CML and GR methods are implemented assuming that the external model parameters

come from a dataset that is so large that uncertainty can be ignored.
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Table S.1: Simulation results for the under-specification setting; results multiplied by 103

are presented, and the coverage probabilities (CP) are reported as percents

β0 βX βZ βXZ

Int GR/ CML Int GR/ CML Int GR/ CML Int GR/ CML
mGR mGR mGR mGR

simple random; N = 400

Bias -25.4 -5.56 -6.12 9.87 4.97 5.53 15.2 4.69 5.34 -0.41 -0.24 1.05

SE 152 40.7 40.8 151 36.3 35.0 154 37.0 35.6 149 151 149

ESE 147 35.9 37.7 148 34.8 34.3 148 34.5 34.3 137 135 139

MSE 23.6 1.69 1.70 22.8 1.34 1.25 24.0 1.39 1.30 22.1 22.7 22.1

CP 945 862 878 956 936 950 947 936 958 929 927 933

case-control; N = 400

Bias - - -1.17 10.2 29.6 3.89 16.3 29.4 3.68 3.03 2.92 -0.77

SE - - 26.9 121 18.8 27.4 120 19.5 26.8 116 117 114

ESE - - 26.1 117 20.3 27.7 117 20.7 28.0 114 114 112

MSE - - 0.72 14.8 1.23 0.77 14.8 1.24 0.73 13.4 13.6 12.9

CP - - 907 941 618 950 935 623 950 948 947 959

Int: internal-data only method
GR: generalized regression, mGR: modified GR for case-control sampling
CML: constrained maximum likelihood
ESE: estimated standard error
MSE: mean squared error
CP: coverage probability of a 95% confidence interval interval
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Table S.2: Simulation results for the missing covariate setting; results multiplied by 103 are
presented, and the coverage probabilities (CP) are reported as percents

β0 βX βZ βXZ

Int GR/ CML Int GR/ CML Int GR/ CML Int GR/ CML
mGR mGR mGR mGR

simple random; N = 400

Bias -25.4 -12.3 -12.8 9.87 2.18 2.05 15.2 15.8 14.4 -0.41 -0.86 2.18

SE 152 57.8 57.7 151 67.7 67.7 154 154 154 149 150 149

ESE 147 53.3 54.2 148 64.4 65.1 148 148 148 137 136 139

MSE 23.6 3.49 3.49 22.8 4.58 4.58 24.0 24.1 24.0 22.1 22.5 22.2

CP 945 944 950 956 936 943 947 941 942 929 929 936

case-control; N = 400

Bias - - 0.85 10.2 16.2 2.57 16.3 16.4 16.5 3.03 2.47 2.59

SE - - 36.1 121 42.2 45.3 120 120 120 116 116 116

ESE - - 36.9 117 42.6 45.4 117 117 117 114 114 115

MSE - - 1.30 14.8 2.04 2.06 14.8 14.8 14.8 13.4 13.5 13.4

CP - - 952 941 914 947 935 936 936 948 945 961

Int: internal-data only method
GR: generalized regression, mGR: modified GR for case-control sampling
CML: constrained maximum likelihood
ESE: estimated standard error
MSE: mean squared error
CP: coverage probability of a 95% confidence interval
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Table S.3: Simulation results for the measurement error setting; results presented are mul-
tiplied by 103, and the coverage probability (CP) is in percents

β0 βZ

Int GR/mGR CML Int GR/mGR CML

simple random; N = 400

Bias -12.5 -10.8 -0.84 7.33 7.06 2.72

SE 141 41.8 25.6 142 138 66.5

ESE 139 38.7 24.4 137 131 61.3

MSE 20.1 1.87 0.66 20.2 19.2 4.43

CP 947 913 952 954 942 912

case-control; N = 400

Bias - - 1.01 8.33 7.99 7.13

SE - - 20.4 104 99.4 59.3

ESE - - 20.7 106 101 58.3

MSE - - 0.42 10.9 9.93 3.56

CP - - 955 961 956 948

Int: internal-data only method
GR: generalized regression, mGR: modified GR for case-control sampling
CML: constrained maximum likelihood
ESE: estimated standard error
MSE: mean squared error
CP: coverage probability of a 95% confidence interval.
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Table S.4: Simulation results for the missing covariate setting when the covariate distribu-
tions are different between internal and external populations; results multiplied by 103 are
presented, and the coverage probabilities (CP) are reported as percents

β0 βX βZ βXZ

Int CML SCML Int CML SCML Int CML SCML Int CML SCML

simple random; N = 400

Bias -15.0 -38.0 -8.16 19.1 -80.1 8.02 9.79 8.24 6.10 -9.96 -5.68 -13.4

SE 149 55.6 42.8 150 62.9 50.3 147 147 144 147 149 143

ESE 147 55.2 44.4 147 64.6 50.2 147 148 145 136 137 136

MSE 22.5 4.53 1.90 22.9 10.4 2.60 21.7 21.8 20.7 21.8 22.1 20.5

CP 948 950 940 952 843 900 948 945 950 925 933 938

Bias - -26.3 -6.42 15.6 -86.0 4.02 6.48 8.02 6.09 2.27 -4.45 -3.37

SE - 37.9 39.1 122 45.0 44.3 119 119 117 117 118 116

ESE - 37.3 38.6 117 45.7 44.3 117 116 115 115 112 114

MSE - 2.13 1.57 15.2 9.42 1.98 14.2 14.2 13.8 13.7 13.9 13.5

CP - 934 939 945 542 920 944 937 944 948 943 953

Int: internal-data only method
CML: constrained maximum likelihood method
SCML: synthetic constrained maximum likelihood method
ESE: estimated standard error
MSE: mean squared error
CP: coverage probability of a 95% confidence interval
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Table S.5: Simulation results for the under-specification setting; results multiplied by 103

are presented, and the coverage probabilities (CP) are reported in percents

β0 βX βZ βXZ

Int GR CML Int GR CML Int GR CML Int GR CML

simple random; N = 400

Bias -17.1 -5.45 -4.81 11.9 5.12 4.22 13.9 8.17 7.08 -2.03 -3.35 -1.96

SE 89.2 18.6 18.3 93.6 26.9 23.4 92.1 270 23.7 98.4 100 99.4

ESE 86.3 16.2 16.4 89.5 24.5 23.7 89.3 245 23.7 87.4 84.9 91.6

MSE 8.25 0.37 0.36 8.90 0.75 0.57 8.68 0.79 0.61 9.69 0.79 0.61

CP 930 927 856 938 925 962 946 912 960 917 900 935

simple random; N = 1000

Bias -3.78 -1.44 -1.18 2.94 1.10 0.75 1.78 3.46 3.51 0.09 0.19 0.31

SE 53.5 10.7 10.7 59.4 15.0 13.7 56.6 15.2 13.6 59.0 58.7 59.0

ESE 53.6 10.0 9.93 55.9 14.4 13.5 55.9 14.4 13.4 55.9 55.1 57.1

MSE 2.88 0.12 0.12 3.53 0.22 0.19 3.21 0.23 0.20 3.47 3.44 3.47

CP 95.2 90.6 88.0 93.5 94.1 95.6 95.6 93.3 94.1 93.9 93.6 95.0

Int: internal-data only method

CML: constrained maximum likelihood

ESE: estimated standard error

MSE: mean squared error

CP: coverage probability of 95% confidence interval
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Table S.6: Simulation results for the missing covariate setting; results multiplied by 103 are
presented, and the coverage probabilities (CP) are reported in percents

β0 βX βZ βXZ

Int GR CML Int GR/ CML Int GR CML Int GR CML

simple random; N = 400

Bias -17.1 -8.95 -8.50 11.9 3.66 2.03 13.9 15.5 14.4 -2.03 -3.33 -0.95

SE 89.2 37.7 37.6 93.6 44.3 43.0 92.1 92.8 92.6 98.4 99.1 99.6

ESE 86.3 35.9 36.3 89.5 42.4 42.7 89.3 88.8 92.2 87.4 86.4 92.2

MSE 8.25 1.50 1.49 8.90 1.97 1.85 8.68 8.84 8.77 9.69 9.82 9.91

CP 930 946 952 938 929 948 946 939 947 917 909 938

simple random; N = 1000

Bias -3.78 -1.77 -1.42 2.94 2.29 1.75 1.78 2.33 1.87 0.09 0.01 0.66

SE 53.5 21.6 21.6 59.4 26.5 25.9 56.6 56.8 56.7 59.0 58.7 59.2

ESE 53.6 21.6 21.6 55.9 25.6 25.5 55.9 55.7 56.1 55.9 55.6 57.2

MSE 2.88 0.47 0.47 3.53 0.71 0.67 3.21 3.23 3.21 3.47 3.44 3.50

CP 95.2 95.1 95.0 93.5 93.3 94.5 95.6 95.9 95.9 93.9 93.8 94.7

Int: internal-data only method

GR: generalized regression

CML: constrained maximum likelihood

ESE: estimated standard error

MSE: mean squared error

CP: coverage probability of 95% confidence interval
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Table S.7: Simulation results for the measurement error setting; results multiplied by 103

are presented, and the coverage probability (CP) is in percents

β0 βZ

Int GR CML Int GR CML

simple random; N = 400

Bias -6.04 -7.13 -1.59 5.10 5.00 2.57

SE 82.2 34.7 27.6 83.8 82.0 58.7

ESE 80.0 32.9 26.2 81.5 77.9 55.0

MSE 6.79 1.26 0.77 7.05 6.74 3.45

CP 942 936 946 945 944 916

simple random; N = 1000

Bias -0.51 -2.11 -0.48 -0.45 -0.05 0.90

SE 51.1 21.2 16.5 52.4 50.0 35.7

ESE 50.3 20.6 16.5 51.2 49.2 34.9

MSE 2.61 0.45 0.27 2.74 2.50 1.28

CP 95.7 93.8 94.8 94.9 95.4 94.4

Int: internal-data only method

GR: generalized regression

CML: constrained maximum likelihood

ESE: estimated standard error

MSE: mean squared error

CP: coverage probability of 95% confidence interval
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Table S.8: Analysis results of BCDDP data assuming that the uncertainty associated with
the parameters in the external mmodel (θ) can be ignored. The variables in the model
include: number of first-degree relatives with breast cancer (numrel), age at menarche (two
dummy variables agemen1–agemen2), age at first live birth (three dummy variables ageflb1–
ageflb3), weight, number of previous biopsies (nbiops), and mammographic density (MD)†

Internal data mGR CML

variable Est. (SE) Est. (SE) Est. (SE)

numrel 0.648 (0.090) 0.346 (0.030) 0.297 (0.020)

agemen1 0.083 (0.091) 0.079 (0.019) 0.077 (0.019)

agemen2 0.468 (0.124) 0.167 (0.028) 0.167 (0.028)

ageflb1 -0.018 (0.146) -0.117 (0.030) -0.117 (0.031)

ageflb2 0.086 (0.144) -0.005 (0.033) -0.005 (0.033)

ageflb3 0.251 (0.137) 0.165 (0.040) 0.163 (0.040)

weight 0.020 (0.004) 0.022 (0.002) 0.024 (0.001)

nbiops 0.180 (0.070) 0.178 (0.069) 0.165 (0.073)

MD 0.430 (0.044) 0.428 (0.045) 0.441 (0.043)

†: adjusted for 5-year age strata

mGR: modified GR for case-control sampling

CML: constrained likelihood method

Est.: estimated coefficient

SE: estimated standard error

S.2 The Score Function and Negative Hessian Matrix

for Pseudo-Loglikelihood

S.2.1 Simple Random Sampling Design

Let sβ(Y,X, Z) = ∂log{fβ(Y |X,Z)}/∂β be the score function of the likelihood for the full

model fβ(·). Based on the pseudo-loglikelihood (equation (4) in the main text) for the con-

strained likelihood, the score function for (β, λ) of the pseudo-loglikelihood can be obtained

as

s∗β =
∂ l∗β,λ
∂β

=

N∑

i=1

sβ(Yi, Xi, Zi) + s̃β(Xi, Zi) ≡
N∑

i=1

s∗β(Yi, Xi, Zi),
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with

s̃β(Xi, Zi) =
cβ(Xi, Zi; θ)λ

1− λTuβ(Xi, Zi; θ)
, (S.1)

cβ(x, z; θ) =

∫

Y

sβ(Y, x, z)U
T (Y, x, θ)fβ(Y |x, z)dY, (S.2)

and

s∗λ =
∂ l∗β,λ
∂λ

=

N∑

i=1

uβ(Xi, Zi; θ)

1− λTuβ(Xi, Zi; θ)
≡

N∑

i=1

s∗λ(Xi, Zi). (S.3)

The estimator (β̂, λ̂) for (β, λ) is obtained as the solution to {s∗Tβ , s∗Tλ }T = 0.

Let

iββ(Y,X, Z) = −∂2log{fβ(Y |X,Z)}/∂β∂βT , (S.4)

and dββ(Y,X, Z) = iββ(Y,X, Z)−sβ(Y,X, Z)⊗2, with A⊗2 = AAT for a vector A. The nega-

tive Hessian matrix I∗ = −∂2 l∗β,λ/∂(β
T , λT )T∂(βT , λT ) derived from the pseudo-loglikelihood

is given by the following expressions for the component matrices:

I∗ββ = −
∂2 l∗β,λ
∂β∂βT

=

N∑

i=1

iββ(Yi, Xi, Zi) +
dβ(Xi, Zi; θ)

1− λTuβ(Xi, Zi; θ)
− s̃β(Xi, Zi)

⊗2,

where

dβ(x, z; θ) =

∫

Y

λTU(Y |x, θ)dββ(Y, x, z)fβ(Y |x, z)dY ; (S.5)

I∗βλ = I∗Tβλ = − ∂2 l∗β,λ
∂β∂λT

= −
N∑

i=1

{
cβ(Xi, Zi; θ)

1− λTuβ(Xi, Zi; θ)
+ s̃β(Xi, Zi)s

∗T
λ (Xi, Zi)

}
;

and

I∗λλ = −
∂2 l∗β,λ
∂λ∂λT

= −
N∑

i=1

s∗λ(Xi, Zi)
⊗2.
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S.2.2 Case-Control Sampling Design

As defined in equation (8) in the main text,

pβ,α(y|x, z) =
µyfβ(y|x, z)∑
y µyfβ(y|x, x)

=
exp(αy)fβ(y|x, z)∑
y exp(αy)fβ(y|x, z)

,

with α = log (µ1/µ0). We can then rewrite the pseudo-loglikelihood (equation (6) in the

main text) as

l∗,ccβ,λ,α =

N∑

i=1

log

{
pβ,α(Yi, Xi, Zi)

1− λTuβ,α(Xi, Zi; θ)

}
,

where

uβ,α(X,Z; θ) =
∑

y

U(y|X, θ) exp(−αy)pβ,α(y|X,Z),

and λ is redefined as λ := λ/µ0, With the above expression the pseudo-loglikelihood under the

case-control sampling design has the same form as that under the simple random sampling

(equation (4) in the main text), except that now the additional nuisance parameter α appears.

In fact, we can extend the results to more general settings where the internal study is

performed under the stratified case-control sampling design, namely the sampling is done

through strata formed by the cross-classification of the case-control status as well as levels of

some covariates (or their crude surrogates). We denote by W the vector of indicators for the

covariate levels defining the strata. In this general setting, the pseudo-loglikelihood takes

the form

l∗,ccβ,λ,α =
N∑

i=1

log

{
pβ,α(Yi, Xi, Zi)

1− λTuβ,α(Xi, Zi; θ)

}
,

where

pβ,α(Y |X,Z) =
exp(YW Tα)fβ(Y |X,Z)∑
y exp(yW

Tα)fβ(y|X,Z)
(S.6)

and

uβ,α(X,Z; θ) =
∑

y

U(y|X, θ)e−yWTαpβ,α(y|X,Z).

The score functions s∗β and s∗λ for (β, λ), and the corresponding component submatrices I∗ββ,

I∗βλ and I∗λλ of the negative Hessian matrix of the pseudo-loglikelihood thus have the same

forms as those given in the case of simple random sampling, with fβ(Y |X,Z) now replaced by

pβ,α(Y |X,Z), and uβ(X,Z; θ) replaced by uβ,α(X,Z; θ). The score function for the nuisance

parameter α is given by

s∗α =
∂ l∗β,λ,α
∂α

=

N∑

i=1

sα(Yi, Xi, Zi) + s̃α(Xi, Zi) ≡
N∑

i=1

s∗α(Yi, Xi, Zi),
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where sα(Y,X, Z) = ∂ log{pβ,α(Y |X,Z)}/∂α, and

s̃α(Xi, Zi) =
cβ,α(Xi, Zi; θ)λ

1− λTuβ,α(Xi, Zi; θ)
,

with

cβ,α(X,Z; θ) =
∑

y

{sα(y,X, Z)− yW}UT (y|X, θ)e−yWTαpβ,α(y|X,Z; β).

The component submatrices of the negative Hessian matrix corresponding to α are given as

I∗αα = −
∂2 l∗,ccβ,λ,α

∂α∂αT

=
N∑

i=1

iαα(Yi, Xi, Zi) +
dβ,α(Xi, Zi; θ)

1− λTuβ,α(Xi, Zi; θ)
− s̃α(Xi, Zi)

⊗2,

where iαα(Y,X, Z) = −∂2log{pβ,α(Y |X,Z)}/∂α∂αT , and

dβ,α(x, z; θ) =
∑

y

λTU(y|x, θ){dαα(y,X, Z)− yWW T + yWsTα(y,X, Z)}e−yWTαpβ,α(y|X,Z),

with dαα(Y,X, Z) = iαα(Y,X, Z)− sα(Y,X, Z)⊗2;

I∗αβ = I∗Tβα = −
∂2 l∗,ccβ,λ,α

∂α∂βT

=

N∑

i=1

{
iαβ(Yi, Xi, Zi) +

eβ,α(Xi, Zi; θ)

1− λTuβ,α(Xi, Zi; θ)
− s̃α(Xi, Zi)s̃

T
β (Xi, Zi)

}
,

where iαβ(Y,X, Z) = −∂2 log{pβ,α(Y |X,Z)}/∂α∂βT , and

eβ,α(x, z; θ) =
∑

y

λTU(y|x, θ){dαβ(y,X, Z) + yWsTβ (y,X, Z)}e−yWTαpβ,α(y|X,Z),

with dαβ(Y,X, Z) = iαβ(Y,X, Z)− sα(Y,X, Z)sβ(Y,X, Z)T ; and

I∗αλ = I∗Tλα = −
∂2 l∗,ccβ,λ,α

∂α∂λT

= −
N∑

i=1

{
cβ,α(Xi, Zi; θ)

1− λTuβ,α(Xi, Zi; θ)
+ s̃α(Xi, Zi)s

∗T
λ (Xi, Zi)

}
.

Note that in Proposition 1 we have absorbed the nuisance parameter α into β so that

the expressions provided there can be unified under both the settings of simple random and

case-control designs.
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S.3 The Score Function and Negative Hessian Matrix

for Synthetic Constrained Likelihood

In synthetic constrained likelihood method, the covariate distribution F †(X,Z) in the ex-

ternal study, different from the distribution F (X,Z) in the internal study, is estimated by a

reference sample (X†
j , Z

†
j ), j = 1, . . . , Nr, where Nr is the size of the reference sample. When

the internal sample is obtained under the simple random sampling design, the synthetic

constrained likelihood is defined as l†β,λ = log(Lβ,F ) + λT
∫
uβ(X,Z; θ)dF̃ †(X,Z), with F̃ †

the empirical distribution of (X†, Z†) in the reference sample, and the synthetic constrained

maximum likelihood (SCML) estimator (β̃, λ̃) for (β, λ) is obtained by solving the estimating

equations ∂ l†β,λ/∂β = 0 and ∂ l†β,λ/∂λ = 0. The expressions for s†β = l†β,λ/∂β and s†λ = l†β,λ/∂λ

are:

s†β =
∂l†β,λ
∂β

=

N∑

i=1

sβ(Yi, Xi, Zi) +

Nr∑

j=1

s̃†β(X
†
j , Z

†
j ),

s̃†β(Xj, Zj) = cβ(X
†
j , Z

†
j ; θ)λ, (S.7)

with sβ(Y,X, Z) = ∂log{fβ(Y |X,Z)}/∂β and cβ(x, z; θ) defined in (S.2), and

s†λ =
∂l†β,λ
∂λ

=
Nr∑

j=1

uβ(X
†
j , Z

†
j ; θ) ≡

Nr∑

j=1

s†λ(X
†
j , Z

†
j ). (S.8)

The component matrices for I† = −∂2 l†β,λ/∂(β
T , λT )T∂(βT , λT ) are given as

I†ββ = −
∂2 l†β,λ
∂β∂βT

=

N∑

i=1

iββ(Yi, Xi, Zi) +

Nr∑

j=1

λTdβ(X
†
j , Z

†
j ; θ),

where iββ(Y,X, Z) = −∂2log{fβ(Y |X,Z)}/∂β∂βT and dβ(x, z; θ) is defined in (S.5);

I†βλ = I†Tβλ = −
∂2 l†β,λ
∂β∂λT

= −∑Nr

j=1cβ(X
†
j , Z

†
j ; θ);

and I†λλ = −∂2 l†β,λ/∂λ∂λ
T is a ℓ× ℓ zero matrix with ℓ the dimension of λ.

When the internal sample is obtained by the case-control sampling design, following

Prentice and Pyke (1979), the likelihood contribution

Lcc
β,F =

N∏

i=1

fβ(Yi|Xi, Zi)dF (Xi, Zi),
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with dF (Xi, Zi) treated nonparametrically is equivalent to the pseudo-likelihood

Lcc
β,α =

N∏

i=1

pβ,α(Yi|Xi, Zi),

with α and pβ,α(y|x, z) defined in equation (8) in the main text. The synthetic constrained

likelihood is then defined as l†β,λ,α = log(Lcc
β,α) + λT

∫
uβ(X,Z; θ)dF̃ †(X,Z). The nuisance

parameter α appears only in the likelihood contribution from the internal sample (first term

in l†β,λ,α) and not in the contribution from the reference sample (second term in l†β,λ,α).

Therefore, all the results for parameters β and λ derived under the simple random sampling

design directly apply, except that in the expressions involving the likelihood contribution

from the internal sample, such as sβ(Y,X, Z) and iββ(Y,X, Z), the quantity fβ(Y |X,Z) is

replaced by pβ,α(Y |X,Z). The nuisance parameter α is directly solved from

0 = s†α =

N∑

i=1

∂

∂α
log{pβ,α(Yi|Xi, Zi)} ≡

N∑

i=1

s†α(Yi, Xi, Zi).

The negative Hessian matrix is now defined as I† = −∂2 l†β,λ,α/∂(β
T , λT , αT )T∂(βT , λT , αT ),

where

I†αα = −
∂2 l†β,λ,α
∂α∂αT

=

N∑

i=1

iαα(Yi, Xi, Zi),

with iαα(Y,X, Z) = −∂2log{pβ,α(Y |X,Z)}/∂α∂αT , and

I†αβ = −
∂2 l†β,λ,α
∂α∂βT

=

N∑

i=1

iαβ(Yi, Xi, Zi),

with iαβ(Y,X, Z) = −∂2log pβ,α(Y |X,Z)/∂α∂βT . The components

I†αλ = I†Tλα = −
∂2 l†β,λ,α
∂α∂βT

are zero matrices.

The extension to the stratified case-control design in the internal study, as discussed in

Appendix S.2.2, is straightforward by redefining pβ,α(Y |X,Z) as in (S.6), and generalizing

α to a vector of parameters corresponding to the levels of covariates W defining the strata.

S.4 Conditions for the Theoretical Results

Below is the list of conditions employed in the theoretical results.
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(i) The true parameter value β0 is an interior point of the parameter space which is

compact.

(ii) The function uβ(x, z; θ) defined in (3) in the main text is twice continuously differen-

tiable in β in a neighborhood N of β0, and E‖uβ(X,Z; θ)‖3 < ∞ in N .

(iii) E{uβ(X,Z; θ)uT
β (X,Z; θ)} is positive definite at β = β0, and

N−1
∑

i

uβ(Xi, Zi; θ)u
T
β (Xi, Zi; θ) → E{uβ(X,Z; θ)uT

β (X,Z; θ)}

in probability uniformly in N .

(iv) E‖cβ(X,Z; θ)‖ < ∞ in N with cβ(x, z; θ) defined in (S.2).

(v) E‖dβ(X,Z; θ)‖ < ∞ in N with dβ(x, z; θ) defined in (S.5).

S.5 Proofs of Lemmas and Propositions

Proof of Lemma 1:

Let sβ(y, x, z) = ∂log{fβ(y|x, z)}/∂β, and iββ(y, x, z) = −∂2log{fβ(y|x, z)}/∂β∂βT . Write

uβ(Xi, Zi) = uβ(Xi, Zi; θ) since the value of θ is always fixed. Consider the ball B = {β :

‖β−β0‖ ≤ n−1/k} for some integer k ≥ 3 such that B ⊂ N . For a fixed β within B, let λ(β)
be the solution to the ∂l∗β,λ/∂λ = 0 or ∂l∗,ccβ,λ /∂λ = 0, namely

N∑

i=1

uβ(Xi, Zi)

1− λ(β)Tuβ(Xi, Zi)
= 0.

Applying Taylor expansion to the left-hand side of the above equation, we obtain

λ(β) = −
{
N−1

N∑

i=1

uβ(Xi, Zi)u
T
β (Xi, Zi)

}−1{
N−1

N∑

i=1

uβ(Xi, Zi)

}
+ op(N

−1/k)

= Op(N
−1/k)

uniformly over B with probability tending to one as N → ∞. Also, by Taylor expansion,

with probability one

N∑

i=1

sβ(Yi, Xi, Zi) = −
{
N−1

N∑

i=1

iββ(Yi, Xi, Zi)

}−1

N(β − β0) + op(N
1−1/k).
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Let Q(β) = l∗β,λ(β). By Taylor expansion again and using the results above, we have

uniformly for β on the surface of B,

−
N∑

i=1

log {1− λT (β)uβ(Xi, Zi)}

=

N∑

i=1

λT (β)uβ(Xi, Zi) +

N∑

i=1

{λT (β)uβ(Xi, Zi)}2 + op(N
1−2/k)

= −N

2

{
N−1

N∑

i=1

uβ(Xi, Zi)

}T {
N−1

N∑

i=1

uβ0
(Xi, Zi)u

T
β0
(Xi, Zi)

}−1{
N−1

N∑

i=1

uβ(Xi, Zi)

}

+op(N
1−2/k)

= −K1N
1−2/k;

N∑

i=1

log{fβ(Y1|Xi, Zi)}

=
N∑

i=1

log{fβ0
(Y1|Xi, Zi)}+

N∑

i=1

(β − β0)
T sβ(Yi, Xi, Z − i)

+
N

2
(β − β0)

T

{
N−1

N∑

i=1

iββ(Yi, Xi, Zi)

}−1

(β − β0) + op(N
1−2/k)

=

N∑

i=1

log{fβ0
(Y1|Xi, Zi)} −

N

2
(β − β0)

T

{
N−1

N∑

i=1

iββ(Yi, Xi, Zi)

}−1

(β − β0) + op(N
1−2/k)

=
N∑

i=1

log{fβ0
(Y1|Xi, Zi)} −K2N

1−2/k,

where K1 and K2 are positive constants. On the other hand, it can similarly be shown that

−∑
i log {1 − λT (β)uβ(Xi, Zi)} evaluated at β0 is negative of order Op(loglogN). All these

results imply that Q(β) is maximized at β̂ in the interior of B, and β̂ and λ̂ = λ(β̂) satisfy

∂l∗β,λ/∂η = 0. The proof for Q(β) = l∗,ccβ,λ(β), i.e. for the case-control setting, is fully parallel.

Proof of Proposition 1: Using the notation given in Appendix S.2, η̂ satisfies
∑

i s
∗
i (β, λ) = 0

with s∗i (β, λ) = {s∗Tβ (Yi, Xi, Zi), s
∗T
λ (Xi, Zi)}T , and

I∗(β, λ) = −
N∑

i=1

∂s∗i (β, λ)/∂η =


 I∗ββ I∗βλ

I∗Tβλ I∗λλ


 .

Under regularity conditions for fβ(y|x, z) and conditions (i)-(v), we have by Taylor expansion
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and Lemma 1,

0 = N−1
∑

i

s∗i (β̂, λ̂) = N−1
∑

i

s∗i (β0, 0)−N−1I∗(β0, 0)(η̂ − η0) + op(N
−1/2)

= N−1
∑

i

s∗i (β0, 0)− I∗(η̂ − η0) + op(N
−1/2),

where

I∗ =


 E{iββ(Y,X, Z)} −E{cβ(X,Z; θ)}

−E{cTβ (X,Z; θ)} −E{uβ(X,Z)uT
β (X,Z)}




is evaluated at β = β0, with iββ(Y,X, Z), cβ(X,Z; θ), and uβ(X,Z; θ) defined in (S.4), (S.2),

and (3) of the main text, respectively. Hence,

√
N(η̂ − η0) = I∗−1

√
N

{
N−1

∑

i

s∗i (β0, 0)

}
+ op(1).

By the fact that E{sβ0
(Y,X, Z)} = 0 and E{uβ0

(X,Z)} = 0, E{s∗i (β0, 0)} = 0. Also, from

expressions given in Appendix S.2, var{s∗i (β0, 0)} = E{s∗i (β0, 0)s
∗T
i (β0, 0)} = J ∗, where

J ∗ =


 E{iββ(Y,X, Z)} O

O E{uβ(X,Z)uT
β (X,Z)}


 ,

evaluated at β = β0, By central limit theorem we then have, as N → ∞,
√
N(η̂− η0) follows

asymptotically the normal distribution with mean zero and covariance matrix I∗−1J ∗I∗−1.

Further matrix calculation simplifies the expression for the asymptotic variance given in

Proposition 1.

When the uncertainty in the parameter θ of the external model cannot be ignored because

it is estimated from a finite external sample, the variance estimator for η̂ needs to be modified

to account for such additional uncertainty, which can be simply achieved using the conven-

tional delta method. Let σηθ = E{∂s∗i (β, λ)/∂θT} = E{∂s̃Tβ (Xi, Zi)/∂θ, ∂s
∗T
λ (Xi, Zi)/∂θ}T ,

which can be readily obtained given the explicit formulas in (S.1) and (S.3) for s̃β(Xi, Zi)

and s∗λ(Xi, Zi). Let vθ/Ne be the variance of the estimate of θ, with Ne the size of the

external sample. Then, by δ-method,
√
N(η̂ − η0) has the asymptotic covariance matrix

I∗−1(J ∗+ρV∗)I∗−1, where V∗ = σηθvθσ
T
ηθ with ρ = limN/Ne. Accordingly, an estimator for

the variance of η̂ can be obtained as

Î∗−1(Ĵ ∗/N + V̂∗/Ne)Î∗−1,

where Â denotes the empirical analogue of A evaluated at η̂.
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Proof of Lemma 2: Since the proofs for the simple random and case-control designs are essen-

tially the same, we detail the former one only. Write ∂l†β,λ/∂β =
∑N

i=1 s
†
i(β) +

∑Nr

j=1s̃
†
j(β, λ),

where s†i (β) = {s†Tβ (Yi, Xi, Zi), 0
T}T , with 0 a ℓ-dimensional vector of zeros, and s̃†j(β, λ) =

{s̃†Tβ (X†
j , Z

†
j ), s

†T
λ (X†

j , Z
†
j )}T . Explicit expressions for these functions are given in Appendix

S.3. Thus 0 =
∑N

i=1 s
†
i(β̃) +

∑Nr

j=1 s̃
†
j(β̃, λ̃).

Consider the ball B contained in the neighborhood of β0 as defined in the proof of Lemma

1. In the following we suppress the dependence on θ in cβ(X,Z; θ) since θ is always fixed.

By Taylor expansion around the point (β∗, 0) with β∗ ∈ B and 0 a ℓ-vector of zeros (ℓ =

dimension of λ), we have

0 =

N∑

i=1

s†i(β
∗) +

Nr∑

j=1

s̃†j(β
∗, 0)− I†ββ(β − β∗)− I†Tβλ(β − β∗)− I†βλλ,

with (β, λ) lying between (β̃, λ̃) and (β∗, 0), where I†ββ and I†βλ are negative Hessian matrices

whose expressions are given in Appendix S.3, and they are evaluated at (β, λ). Accordingly,

we have


 β̂ − β0

λ̂


 =


 Hββ Hβλ

HT
βλ O




−1


∑N
i=1 s

†T
β (Yi, Xi, Zi)

∑Nr

j=1 s
†
λ(X

†
j , Z

†
j )


 + op(N

−1/k),

with Hββ =
∑N

i=1 iββ(Yi, Xi, Zi) and Hβλ = −∑Nr

j=1cβ(X
†
j , Z

†
j ). So,

λ = HHT
βλH

−1
ββ

N∑

i=1

s†Tβ (Yi, Xi, Zi)−H
Nr∑

j=1

s̃†λ(X
†
j , Z

†
j ),

with H = (HT
βλH

−1
ββHβλ)

−1. As N → ∞, the limiting value of the matrix H is of order

Op(N
−2
r N), and that of HT

βλH
−1
ββ is Op(NrN

−1) and hence λ is of order O(N−(1/k)κ−1) with

probability one uniformly for β ∈ B.
Recalling the sufficient conditions for constrained maximality in the Lagrange multiplier

theory, together with the condition q > ℓ (Chiang and Wainwright, 1984, p. 385), we

can then conclude the results of this lemma by noting that, with probability tending to one,

∂2l†β,λ/∂β∂β
T = −I†ββ is negative definite by the fact that λ → 0 and the regularity condition

that ∂2log{fβ(y|x, z)}/∂β∂βT is negative definite for β ∈ B.
Proof of Proposition 2: Under the conditions specified, the Taylor expansion yields

0 =
N∑

i=1

s†i (β0) +
Nr∑

j=1

s̃†j(β0, 0)− I†ββ(β̂ − β0)− I†Tβλ(β̂ − β0)− I†βλλ̂+ op(N
1/2 +N1/2

r ),
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with I†ββ and I†βλ evaluated at (β0, 0). Hence,

√
N


 β̂ − β0

λ̂


 =




1
N

∑N
i=1 iββ(Yi, Xi, Zi) −Nr

N
1
Nr

∑Nr

j=1cβ(X
†
j , Z

†
j )

−Nr

N
1
Nr

∑Nr

j=1c
T
β (X

†
j , Z

†
j ) O




−1

×




1√
N

∑N
i=1 s

†T
β (Yi, Xi, Zi)√

Nr

N
1√
Nr

∑Nr

j=1s
†
λ(X

†
j , Z

†
j )


 + op(1)

= I†−1ZN + op(1),

with

I† =


 B −κC

−κCT O


 ,

and

ZN =




1√
N

∑N
i=1 s

†T
β (Yi, Xi, Zi)

√
κ√
Nr

∑Nr

j=1s
†
λ(X

†
j , Z

†
j )


 ,

which, following the fact E{s†Tβ (Y,X, Z)} = 0 and E†{s†λ(X†, Z†)} = 0, converges in distri-

bution to a mean-zero normal distribution with covariance matrix

J † =


 B O

O κL


 .

Accordingly, as N → ∞,
√
N(η̃ − η0) follows a normal distribution with mean zero and

covariance matrix I†−1J †I†−1, which by matrix calculation reduces to the expression given

in Proposition 2.

When the uncertainty in the parameter θ of the external model needs to be accounted for,

we modify the variance estimator for η̃ using the δ-method. Let σ†
ηθ = E{∂s̃†j(β, λ)/∂θT} =

E{∂s̃†Tβ (X†
j , Z

†
j )/∂θ, ∂s

†T
λ (X†

j , Z
†
j )/∂θ}T , which can be readily obtained given the formulas in

(S.7) and (S.8) for s̃†β(X
†
j , Z

†
j ) and s†λ(X

†
j , Z

†
j ). Let vθ/Ne be the variance of the estimate of

θ, with Ne the size of the external sample. By the delta method, the asymptotic covarinace

matrix of ZN is

K† =


 B O

O κ(L+ ρ†vθ)


 ,

where ρ† = limNr/Ne. Therefore,
√
N(η̃ − η0) has the asymptotic covariance matrix

I†−1K†I†−1. Accordingly, an estimator for the variance of η̃ can be obtained as

N−1Ĩ†−1K̃†Ĩ†−1,

where Ã denotes the empirical analogue of A evaluated at η̃.
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